viernes, 28 de junio de 2019

Prueba t de Student

En estadística, una prueba t de Studentprueba t de estudiante, o Test-T es cualquier prueba en la que el estadístico utilizado tiene una distribución t de Student si la hipótesis nula es cierta. Se aplica cuando la población estudiada sigue una distribución normal pero el tamaño muestral es demasiado pequeño como para que el estadístico en el que está basada la inferencia esté normalmente distribuido, utilizándose una estimación de la desviación típica en lugar del valor real. Es utilizado en análisis discriminante.

Esta fórmula está basada en n-1 grados de libertad (degrees of freedom). Esta terminología resulta del hecho de que si bien s2 está basada en n cantidades   . . . , éstas suman cero, así que especificar los valores de cualquier n-1 de las cantidades determina el valor restante. Por ejemplo, si n=4 y
 y , entonces automáticamente tenemos , así que sólo tres de los cuatro valores de  están libremente determinamos 3 grados de libertad.

Entonces, en esta unidad la fórmula de grados de libertad será n-1 y su simbología 


Supóngase que se toma una muestra de una población normal con media  y varianza Si es el promedio de las n observaciones que contiene la muestra aleatoria, entonces la distribución  es una distribución normal estándar. Supóngase que la varianza de la población 2 es desconocida. ¿Qué sucede con la distribución de esta estadística si se reemplaza  por s? La distribución proporciona la respuesta a esta pregunta.

La media y la varianza de la distribución t son  = 0 y  para >2, respectivamente.
La siguiente figura presenta la gráfica de varias distribuciones t. La apariencia general de la distribución t es similar a la de la distribución normal estándar: ambas son simétricas y unimodales, y el valor máximo de la ordenada se alcanza en la media  = 0. Sin embargo, la distribución t tiene colas más amplias que la normal; esto es, la probabilidad de las colas es mayor que en la distribución normal. A medida que el número de grados de libertad tiende a infinito, la forma límite de la distribución t es la distribución normal estándar.

Propiedades de las distribuciones t

  1. Cada curva t tiene forma de campana con centro en 0.


  2. Cada curva t, está más dispersa que la curva normal estándar z.

  3. A medida que  aumenta, la dispersión de la curva t correspondiente disminuye.

  4. A medida que  , la secuencia de curvas t se aproxima a la curva normal estándar, por lo que la curva z recibe a veces el nombre de curva t con gl = 


La distribución de la variable aleatoria t está dada por:
Esta se conoce como la distribución t con  grados de libertad.

Sean X1, X2, . . . , Xn variables aleatorias independientes que son todas normales con media  y desviación estándar . Entonces la variable aleatoria  tiene una distribución t con  = n-1 grados de libertad.

La distribución de probabilidad de t se publicó por primera vez en 1908 en un artículo de W. S. Gosset. En esa época, Gosset era empleado de una cervecería irlandesa que desaprobaba la publicación de investigaciones de sus empleados. Para evadir esta prohibición, publicó su trabajo en secreto bajo el nombre de "Student". En consecuencia, la distribución t normalmente se llama distribución t de Student, o simplemente distribución t. Para derivar la ecuación de esta distribución, Gosset supone que las muestras se seleccionan de una población normal. Aunque esto parecería una suposición muy restrictiva, se puede mostrar que las poblaciones no normales que poseen distribuciones en forma casi de campana aún proporcionan valores de t que se aproximan muy de cerca a la distribución t.

La distribución t difiere de la de Z en que la varianza de t depende del tamaño de la muestra y siempre es mayor a uno. Unicamente cuando el tamaño de la muestra tiende a infinito las dos distribuciones serán las mismas.

Se acostumbra representar con el valor t por arriba del cual se encuentra un área igual a . Como la distribución t es simétrica alrededor de una media de cero, tenemos; es decir, el valor t que deja un área de  a la derecha y por tanto un área de  a la izquierda, es igual al valor t negativo que deja un área de  en la cola derecha de la distribución. Esto es, t0.95 = -t0.05, t0.99=-t0.01, etc.

Para encontrar los valores de t se utilizará la tabla de valores críticos de la distribución t del libro Probabilidad y Estadística para Ingenieros de los autores Walpole, Myers y Myers.

Ejemplo:
El valor t con  = 14 grados de libertad que deja un área de 0.025 a la izquierda, y por tanto un área de 0.975 a la derecha, es
t0.975=-t0.025 = -2.145
Si se observa la tabla, el área sombreada de la curva es de la cola derecha, es por esto que se tiene que hacer la resta de . La manera de encontrar el valor de t es buscar el valor de  en el primer renglón de la tabla y luego buscar los grados de libertad en la primer columna y donde se intercepten   se obtendrá el valor de t.

Ejemplo:
Encuentre la probabilidad de –t0.025 < t < t0.05.
Solución:
Como t0.05 deja un área de 0.05 a la derecha, y –t0.025 deja un área de 0.025 a la izquierda, encontramos un área total de 1-0.05-0.025 = 0.925.

P( –t0.025 < t < t0.05) = 0.925



EJERCICIOS RESUELTOS



Ejercicios propuesto 







No hay comentarios:

Publicar un comentario

F de Fisher

Distribución f de Fisher. Recibió este nombre en honor a Sir Ronald Fisher, uno de los fundadores de la estadística moderna. Se usa como...